
Linear Functions

Scan the lesson. List two real-world scenarios in which you would use functions.

Real-World Link

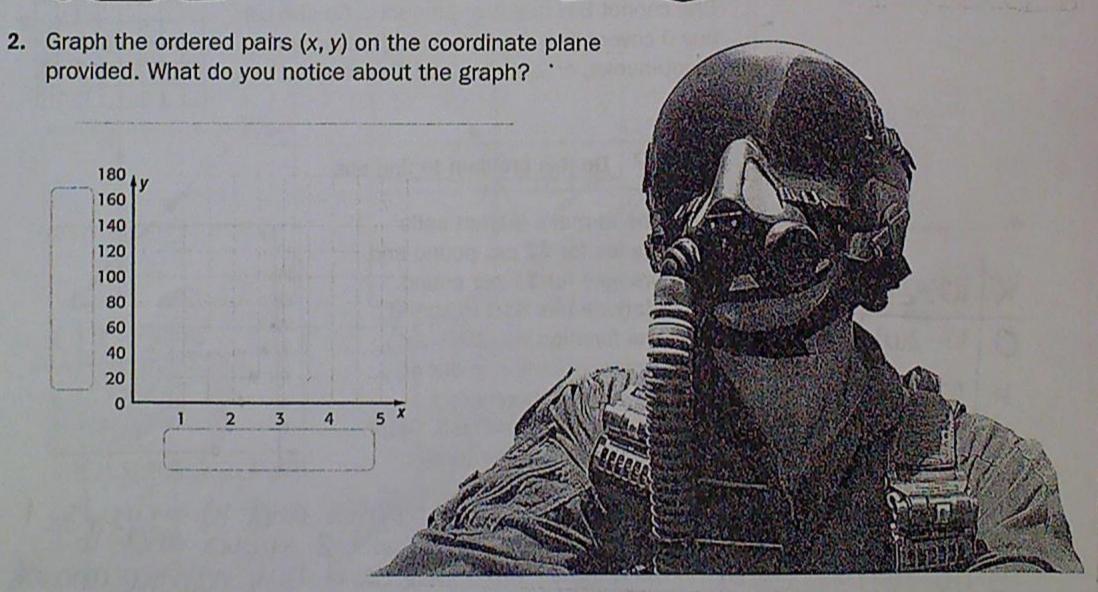
Up, Up, and Away The Lockheed SR-71 Blackbird has a top speed of 36.6 miles per minute. If x represents the minutes traveled at this speed, the function rule for the distance traveled is y = 36.6x.

1. Complete the function table.

Input x		1	2	3	4
Rule	36.6x	36.6(1)	36.6(2)		
Output	у	36.6			
(Input, Output)	(x, y)	(1, 36.6)			

Essential Question

HOW can we model relationships between quantities?


Vocabulary

linear function continuous data discrete data

Common Core State Standards

Content Standards 8.F.1, 8.F.3, 8.F.4 **Mathematical Practices** 1, 3, 4, 7

Function Notation

The equation y = 5 - 3x

can also be written in

function notation as

f(x) = 5 - 3x.

Graph a Function

Sometimes functions are written using two variables. One variable, usually x, represents the domain and the other, usually y, represents the range. When a function is written in this form it is an equation.

Like equations, functions can be represented in words, in a table, with a graph, and as ordered pairs. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Example

1. The school store sells book covers for \$2 each and notebooks for \$1. Toni has \$5 to spend. The function y = 5 - 2x represents the number of book covers x and notebooks y she can buy. Graph the function. Interpret the points graphed.

Step 1

Choose values for x and substitute them in the function to find y.

* Make a table of values!

X	5-2x	y
0	5 – 2(0)	5
1	5 - 2(1)	3
2	5 - 2(2)	1
3	5 - 2(3)	-1

Step 2

Graph the ordered pairs (x, y).

She cannot buy negative amounts. So she can buy 0 covers and 5 notebooks, 1 cover and 3 notebooks, or 2 covers and 1 notebook.

	y (0, 5	j)-			
		-(1	, 3)-		
			-(2	, 1)-	
0			~	-(:	3, -	1)

Got It? Do this problem to find out.

 $\frac{9.}{10-2x}$ $\frac{10}{10}$ \frac

a. The farmer's market sells apples for \$2 per pound and oranges for \$1 per pound.

Marjorie has \$10 to spend.

The function y = 10 - 2x represents the number of apples x and oranges yMarjorie can purchase. Graph the function and interpret the points graphed.

14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 X

She can buy Dapples and 10 ovanges, I apple and 8 ovanges, 2 apples and to ovanges, I brances, etc. She can't buy neoptive anounts.