Proportional Linear Relationships

Words

Two quantities a and b have a proportional linear relationship if they have a constant ratio and a constant rate of change.

Symbols

 $\frac{b}{a}$ is constant and $\frac{\text{change in } b}{\text{change in } a}$ is constant.

To determine if two quantities are proportional, compare the ratio $\frac{b}{a}$ for several pairs of points to determine if there is a constant ratio.

Example

Use the table to determine if there is a proportional linear relationship between a temperature in degrees Fahrenheit and a temperature in degrees Celsius. Explain your reasoning.

Constant Rate of Change

change in °F $\frac{\text{change in °C}}{\text{change in °C}} = \frac{9}{5}$

Since the rate of change is constant, this is a linear relationship.

To determine if the two scales are proportional, express the relationship between the degrees for several columns as a ratio.

 $\rightarrow \frac{41}{5} = 8.2$ $\frac{50}{10} = 5$ $\frac{59}{15} \approx 3.9$ degrees Fahrenheit degrees Celsius

Since the ratios are not the same, the relationship between degrees Fahrenheit degrees Celsius is not proportional.

Check: Graph the points on the coordinate plane. Then connect them with a line.

The points appear to fall in a straight line so the relationship is linear. V

The line connecting the points does not pass through the origin so the relationship is not proportional. <

Key Concept

Osee if there's a constant rate of change of the does, take 3) If those #5 are the same, it's Proportional Relationships

> Two quantities are proportional if they have a constant ratio.

Got It? Do this problem to find out. Yes because c. Use the table to determine if the rate of change is constant (0.45) and there is a proportional linear relationship between mass of an object in kilograms and the weight there is a constant of the object in pounds. Explain your reason ratio of 0.45 **Guided Practice** 1. The amount of paint y needed to paint a certain amount of chairs x is shown in the table. Is the relationship between the two quantities linear? If so, find the constant rate of change. If not, explain your reasoning. (Example 1)

	-	/	$/ \overline{}$	1
Mass (kg)	9.	18	27	36
Weight (lb)	20	40°	60	80

+9 +9 +9 -0.4527 = 0.45 =

Paint Needed for Chairs		
Chairs, x	Cans of Paint, y 6	
5		
10		
15	18	

 The altitude y of a certain airplane after a certain number of minutes x is shown in the graph. Is the relationship linear? If so, find the constant rate of change. If not, explain your reasoning. (Example 1)

 Determine whether a proportional relationship exists between the two quantities shown in Exercise 1. Explain your reasoning. (Example 2)

4. Building on the Essential Question How can you use a table to determine if there is a proportional relationship between two quantities?

Rate Yourself!

Are you ready to move on? Shade the section that applies.

For more help, go online to access a Personal Tutor.

